In 1959, physicist Richard Feynman, in his talk “There’s plenty of room at the bottom”, envisioned a future where we could engineer materials and devices from bottom up, by directly manipulating individual atoms. This field is now known as Nanotechnology. It involves developing devices and materials on a nanoscale, which is a just a billionth of a metre, a concept that nature seems to have perfected. From the nano-sized hair on a lizard’s feet that helps it grip vertical walls, to the nanostructures on a butterfly’s wing which create its appealing colours and the flagella on bacteria which assist in their movement, are all examples of nature using nanotechnology. Although humanity is yet to achieve the level of complexity we see in nature, recent advances in the field, some by imitating nature, have had an enormous impact, especially in the fields of technology and medicine. The idea of building helical nanostructures and then using them as propellers on tiny robots swimming inside the human body or blowing electron bubbles from a two dimensional sheet of electrons may sound futuristic, but this is the kind of research happening in the Optics, Nanostructures and Quantum fluids lab at the Indian Institute of Science (IISc).